Modeling with Copulas and Vines in Estimation of Distribution Algorithms

نویسندگان

  • Marta Soto
  • Yasser González-Fernández
  • Carlos Alberto Ochoa Ortíz Zezzatti
چکیده

The aim of this work is studying the use of copulas and vines in numerical optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs built around the multivariate product and normal copulas, and other two based on pair-copula decomposition of vine models are studied. We analyze empirically the effect of both marginal distributions and dependence structure in order to show that both aspects play a crucial role in the success of the optimization process. The results show that the use of copulas and vines opens new opportunities to a more appropriate modeling of search distributions in EDAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

The use of probabilistic models based on copulas in EDAs (Estimation of Distribution Algorithms) is currently an active area of research. In this context, the copulaedas package for R intends to provide a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known benchmark pro...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Faster estimation of High-Dimensional Vine Copulas with Automatic Differentiation

Vine copula is an important tool in modeling dependence structures of continuousvalued random variables. The maximum likelihood estimation (MLE) for vine copulas has long been considered computationally difficult in higher dimensions, even in 10 or 20 dimensions. Current computational practice, including the implementation in the state-ofthe-art R package VineCopula, suffers from the bottleneck...

متن کامل

Copulas and Vines (stat08012)

Copulas and vines allow us to model the distribution of multivariate random variables in a flexible way. This article introduces copulas via Sklar’s theorem, explains how pair copula constructions are built by decomposing multivariate copula densities and illustrates vine graphical representations.

متن کامل

Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas

Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1210.5500  شماره 

صفحات  -

تاریخ انتشار 2012